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1. INTRODUCTION

A standard problem in estimation theory consists of using a set of

available information about a random variable to obtain an estimate of

its value. When the criterion used in evaluating the estimate is the

conditional variance of the estimate, the best estimator is given

by the conditional mean. However, this formulation assumes that all

of the available information is concentrated at a central location.

In many areas of application, such as Command and Control systems and

meteorology, the acquisition of data is characterized by sensors

which are spatially and temporally distributed. Thus, there are

nontrivial costs associated with the transfer of data to a central

location for the purpose of estimation.

An approach to designing estimation algorithms for these areas

of application is to preprocess some of the data at various local

processing nodes, thereby reducing the communication load on the

system. The result is an estimation scheme with a fixed structure

(often hierarchical), and constraints on the available information

at any one node. Figure 1 depicts a typical estimator structure.

COORD I NATOR

LOCAL . LOCAL

ESTIMATOR 1 ESTIMATOR N

Figure 1
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The structure of Figure 1 has similarities with. a decentralized

decision problem. In this paper, we propose to study estimation pro-

blems with fixed estimator structures, hereafter referred to as dis-

tributed estimation problems, by imbedding the estimation in a class

of decentralized decision problems.. These decision problems have

special structures which can be exploited for some linear Gaussian

systems to obtain closed-form solutions for the estimators. In part-

icular, the decisions variables do not affect the evolution of the

state variables and, in certain cases, they do not affect the observa-

tions received by other decision makers. This latter case results

in a partially nested decision problem, as defined in Ho and Chu 11].

There has been a significant amount of recent work on the subject

of distributed estimation. The various approaches can be divided into

two classes; The first class consists of methods which use the distri-

buted structure of the problem in such a way as to achieve an overall

estimator whose error corresponds to that of a fully centralized esti-

mator, and thus optimality is achieved. Elegant solutions to some of

these problems are presented in 12], 13], and 14]. The second class of

approaches consists of utilizing a fixed structure, which is simple,

to achieve the best performance possible with this restricted structure.

This approach can seldom achieve the performance of a centralized scheme.

Typical of the results in this case are the papers of Tacker,Sanders and

their colleagues [5], 16].

In this paper, we follow the spirit of the second approach. Specifi-

cally, we take as given a specific architecture of processing stations,

with prespecified flows of information among them. Given this structure,

and the apriori statistics of the random variables present in the system,

we restrict the data processing to consist of linear strategies of the

available data. It is our purpose to characterize the "best" processing

schemes in terms of an overall performance measure; our estimation problem

will thus become a stochastic team problem, where a number of decision

agents with different information seek to minimize a common goal.
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Fixed structure decentralized decision problems have been considered

by a number of authors [7], [8], and [9]. Our approach in this paper

follows very closely the formulation of Barta [9] for linear control of

decentralized stochastic systems. Indeed, most of the results of Section

4 of this paper appear in Barta and Sandell [10].

The paper is organized as follows. Section 2 contains the mathe-

matical formulation of fixed structure linear estimation problems using

a decision theoretic viewpoint. Section 3 presents general necessary

conditions which optimal estimators must statisfy. These conditions are

not very useful due to their complexity. In Section 4, we specialize

the results of Section 3 to a specific structure which corresponds to a

fully decentralized estimation algorithm. This case permits significant

analysis, as was previously done in Barta and Sandell []0]. We extend

their results to illustrate how the complexity of the local estimation

algorithm depends on the importance of correlation between the errors of

the various local estimators. Section 5 contains some simple examples

which illustrate the results of Section 4. Section 6 discusses the results

and areas of future research.

2. MATHEMATICAL FORMULATION

Assume that there are N local substations and one coordinator station

in the decentralized estimation systems. Denote the state of the environ-

ment by x(t), an R -valued random process on [O,T] whose evolution is

governed by the stochastic differential equation

dx(t) = A(t)x(t)xdt + B(t)dw(t), (2.1)

where w(t) is an R - valued standard Wiener process. Each local substation

receives data from local measurements, described by the observation equations

dyi(t) = Ci(t)x(t)dt + Di. (t)dvi(t) (2.2)
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where v. (t), w(t) are standard, mutually independent Wiener processes, and
1

Yi(t) is an Rm i - valued random process. The matrices A(t), B(t), Ci(t), Di(t)

are assumed continuous an [O,T] for i = O,...N. In addition, the matrices

D.(t) are assumed invertible for all i,t.

To each local substation corresponds a decision agent, whose decisions

are denoted by ui(t) in RPi. The decisions made at each substation depend

only on real-time observations of local data, as in equation (2.2), plus

the apriori knowledge about the statistics of the systems. The apriori

knowledge, common to all local substations and the coordinator station, con-

sists of knowledge of the matrices A(t), B(t), Ci(t), Di(t), for i = O,...N,

t £ [O,T], together with the initial distribution of the initial condition

x(O). For the sake of simplicity, we assume that x(O) is a zero-mean, normal

random variable with covariance Z(0).

The coordinator station receives the decision outputs of all the local

subsystems, u i(t), i = 1...N, in addition to an independent set of measure-

ments y (t). The output of the coordinator station is denoted by u (t), and

it is based on real-time observation of measurements and the prior decisions

of the local substations.

Associated with the estimation structure is a performance index, of the

form

J = E { (u(t) - S(t)x(t)T Q(t) (u(t) - S(t)x(t))dt, (2.3)

where u(t) consists of the vector of decisions,

T T T
=uuT(t) = (uo(t) ,.. (2.4)

and the superscript T denotes transposition. The matrix Q(t) is assumed

positive semidefinite and continuous for t in [0,T]. With this performance

criterion, the design of a distributed estimation scheme can be reduced to

determining the admissible decision strategies which minimize the quadratic

function J.
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The admissible strategies are restricted to be linear maps of the

available information which yield mean-square integrable decision variables.

Specifically, since equation (2.2) implies that the local observations are

corrupted by additive white noise, we assume that, for i = l,...n,

t

ui(t) = J Hi(t,s)dyi (s) (2.5)

where

H.(t,s) = 0 if s > t, (2.6)

and

T T
Trace jf H.(t,s)HT(t,s)dtds < . (2.7)

For the coordinator, we assume that

u (t) = H(t,s)dy(s) + K.(t,s)u.(s)ds
0 o i=l 1 1

n

+C Li(t) u. (t) (2.8)
i=l

where H , K. satisfy (2.6) and (2.7), while the matrices L. (t) are
0 1 1

continuous on [0,T].

The parametrization of the control laws in equations (2.5) to (2.8)

results in admissible strategy spaces which are Hilbert spaces. Specifically,

the admissible strategies for u., i = 1,...N, are elements of the Hilbert space

of linear operators from L2 ([O,T], R ni) to L2([O,T], RPi) with finite trace,

and inner product

1 2 T T 1 2 T *

<H , H > = Trace f f H (t,s)H (t,s)dtds = Trace (H 1H2) (2.9)

For additional information about Hilbert spaces of operators, the

reader should consult Balakrishnan [11]. We will use the symbol Hi with-

out its arguments to refer to the linear operator, while H. i(t,s) will be

used to refer to the kernel of the operator.
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The assumption of linear strategies for all decision agents in the

problem represents a restriction on the class of admissible strategies.

However, the system and observations described by equations (2.1) and (2.2)

result in zero-mean, jointly Gaussian random processes x,yo,...Y N. Since

the decisions u(t) do not affect the evolution of the state x(t) (this is

a property of estimation problems) for any control law u(t) such that

T 2
E 1llu(t)ll dt < a, (2.10)

we can use a version of Fubini's theorem to show

J that (u(t)-S(t)x(t))Q(t) (u(t)-(t)x(t)) dt.he integrand

Notice that the optimal estimator will minimize the integrand

Jt = E {(u(t)-S(t)x(t)) TQ(t)(u(t)-S(t)x(t)) (2.12)

almost everywhere. In many cases, this will enable us to show that the

true optimal solution belongs to the admissible class of linear strategies.

To conclude this section, we will discuss some relevant examples, and indicate

how they fit in this framework.

Example 1: Centralized estimation

Assume that N = 0, so that the only station present is the coordinator

station. In this case, J1 corresponds to

J1 = E{(u (t)-S(-St)x(t)) Q(t)(u(t)xS(t)x(t)))}

Its minimum among all mean-square integrable u (t) is achieved at

u (t) = S(t)x(t) (2.13)
o

where x(t) is the minimum variance estimate of xt , given the prior

observations, which is obtained from a Kalman filter. Hence, the optimal

estimator is linear.
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Example 2. Hierarchical Estimation

Let N = 2. Furthermore, let p0 = P1 = P2 = n and

0 0 I 

Assume C (t) 0.
0

Then, equation (2.12) yields

J1 = i (uO(t)-x(t)) Tui(t)-x(t) '

We consider the minimization of J1 over all mean-square integrable decision.

The last two terms in the sum are minimized by using local Kalman filters at

each local substation. Furthermore, it was established in Willsky, Castanon et

al [2], that the first term can be minimized absolutely, when the local strate-

gies are Kalman filters, by a strategy of the form (2.8). Hence, the optimal

hierarchical estimator for this problem is in the class of linear estimators.

Example 3. Fully Decentralized Estimation

Assume that there is no coordinator station, so that u (t)- 0 for all t.
o

In this case,

J1 =-E (u(t)-s(t)x(t)) Q(t)(u(t)-s(t)x(t)) '

For each t, this is a static team problem with jointly Gaussian statistics;

hence, Radner's theorem [12] implies that the optimal decision strategies are

linear maps of the available observations, and hence they belong to the linear

class in equations (2.5) to (2.8).

Example 4. Let N = 1, p1 = 1, Po= n, and

S (t) = (o) QIt 0 o0



Then,

J1 = E (u (t)) x (t) ) T (u (t)-x(t))

It is clear that, if n > 1, some form of nonlinear encoding of the infor-

mation Yl will provide a lower value of J1 than the best linear encoder,

because u is a scalar signal and x is a vector process. In this case, the

optimal decision rules are nonlinear.

In many cases, the optimal estimation strategies will be nonlinear.

Nevertheless, there will be a person-by-person-optimal linear strategy

which will be of interest because of ease of implementation. In the next

Section, we provide necessary conditions which characterize these linear

person-by-person optimal strategies.

3. NECESSARY CONDITIONS

The formulation of Section 2 imbedded the distributed estimation pro-

blem into a team decision problem with a quadratic criterion, where decision

rules are elements of a Hilbert space of linear operators. In this section,

we provide necessary conditions which characterize the estimators resulting

from this approach. The mathematical development of this section follows

closely the development in Barta [9].

In operator notation, equations (2.5) and (2.8) can be written as

ui = Hi(dyi), i = 1,...N (3.1)

N

u = Hody + (K.u. + L.u.) (3.2)

where Li is the linear operator with kernel

L.(t,s) = L. (t)>(t-s) (3.3)
1 1

Furthermore, the quadratic functional (2.4) can be written as
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J = E |(u (t)-S (t)x(t)) (t) (u(t)-S (t)x(t))dt

= Trace S*QSIxx + QZuu - 2Qux (3.4)

where XX ,, and YU are the covariance operators [11] corresponding to the

random processes x(t) and u(t). Note that the decision operators are

implicit in defining u(t) as a random process.

Let's partition u as

(t)]T - T
u(t) = [u (t)L U (t)...u ] u (3.5)

0 Ii N 0

Then, C can be partitioned

uu

so that

uu . . dydy a.u(t) = y(t) (3.7)
HH

= diaglHi j y(t)

so that

Iuu =(diag Hi) 'dydy (diag Hi (3.8)

Similarly,

uou [Hodydy H1 ...HodyodyN H] +
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N

+ [ [(K.+L )Hi Hdy d ... (K.+L )Hi H*] (3 9)
i=l z i i dyd 1 i i dyidy N

and

N

I H dy H* + I {H dd H*(K* + L*)
u u dydyo o dy dy i= i 1

00 0 0 1=1 01

+(K,+L, )H d dy H*}
i i~)i dYodYi o

N N

+ I I (K.+L.)Hj H* (K.+L.) (3.10)
i=lj=1 

A similar partition yields

X = o (3.11)

where

N

x H0 Idy x + c (K,+L) H Idyx (3.12)
o i i= i dYiX

x =E, [H i dYiX ..H .] (3.12)Eux i dyIx N dyNx

Using equations (3.6) - (3.13) in equation (3.4), we can express the functional

J as a deterministic quadratic function of the operators H., Li, K., which are

elements of a linear Hilbert space. We will denote this dependence by

J = J (H, L, K) (3.14)
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Since J is a quadratic functional, and the linear operators H, L, K are

elements of Hilbert spaces, we can compute the Frechet differential of J

[13] with respect to variations in the operators. In particular, we will

denote the Frechet differential of J in the direction of each of the com-

ponents of H, K and L. Partition the operators Q, S, according to equations

(3.6), as

/Qoo Q0ol

Q = (3.14)

Qlo Qll/

s= ( (3.15)

Then, we can use equations (3.6) - (3.15) to obtain the Frechet differentials:

6 J(H,K,L,H ) = 2 Trace 0Q Ho d dy + Q(K+L )Hdy

Qol 1 dYodY Qo o dy 

L dy dy NJ

-ol S1 1*J ] o (3.16)

6 JL(H,KL;Ki+Li ) = 2 Trace QOO Ho dydy Hi

N
+Q (K.+L.) H dydy Hi + Qol 1 d Ho 1
00.1 Ci Idyj dy 1 o1 dy dy 1

12



S J(H,K,L ; Hi) = 2 Trace t [(Ki + iL)Q HH 1 I I i 1 0ooo dYody.

N
+ (K +L.) Qoo(K.+L.) Hj 
j=l i i

ol 1 dy dy d

+ Q 1 H0 Cdy dy + (K +L.) *Y

Q1 HN CdyidYN

N N

Qj=l (K+Lj )HJ dydy i j=l 11 dyQdy.

* *

- (K+L) (QooSo+Qol S1) 
1 00 0 oil dyix

i 1

i + QllS) *S ] ~ 'i (3.18)where Qo' Qll' S are the blocks partition in the corresponding partition

of u(t) = (u,(t),...u (t)) 

Using expressions (3.16) - (3.18), we can provide necessary conditions for

optimality of a set of linear maps (H,K,L), as follows:

Proposition 3.1 If H,K,L minimize the functional J over the space of

all linear maps,then

(a) 6JH (H,K,L ; H ) = 0H o
0

JK i+L. (H,K,L ; K. + i.) = 0

-SJH (H,K,L ; i) = 0

1313



for all i=l,...N, and for all admissible Ki,L.,H and H

Proof The proof follows directly from Theorem 1 in Chapter 7 in Luenberger [13],

since the existence of Frechet differentials provides an expression for the

Gateaux differential, which must be zero at a minimum.

Proposition 3.1 can be used, together with the fact that admissible operators

H,K,L are Volterra integral operators, to obtain sets of coupled integral

conditions which characterize the optimal solution, in a manner similar to

Wiener-Hopf factorization [14]. We will not do so here, focusing instead

on obtaining the expressions which characterize the optimum in the specific

case of equations (2.2) - (2.3) for the fully decentralized case in the next

section.

4. FULLY DECENTRALIZED ESTIMATION

In the fully decentralized case, the coordinator station is absent.

In terms of the formulation of section 3, the operators K.,Li and Ho are

identically zero, as are the weighting matrices S , Qoo' Q0o and Qlo' for all

time t in [0,T]. This causes an extensive simplification in the equations

of Proposition 3.1. Specifically, equation (3.18) now becomes

6H J(H;Hi) = Tracej Q1 dy (QlSl) dyix (4,1)
i j=l i'

The equivalent set of integral equations corresponding to equation (4.1)

are

N .. t

NC Q11 Hj (t)l)C (Q xa i(tls) (4,2)
j Qll H (t, )dy dy(sl s)dl (QllS1 (t) xdy j=l o

A similar equation can be found in Barta-Sandell 110], where a solution is

found using an innovations approach. We will present a different derivation

of their results in this section.

14



Assume that Qll > 0 and is constant in time. This implies that the

cost functional J is strictly convex, so that there is a unique minimum,

which is characterized by the integral equation (4.2). Furthermore, as-

sume, without loss of generality, that all decisions ui are scalar-valued,

that is p. = 1 for all i. A vector-valued decision can be decomposed into
1

Pi stations with the same information. Hence, the assumption in equation

1(2.3) that the vi are mutually independent Wiener processes will be re-
moved at this stage, to allow for this development,

We begin by noting that equation (4.2) is a linear equation driven

by a sum of terms in the right hand side. Hence, by superposition, the

optimal solution Hj(t,s) can be written as

N n k

H (t,s) = G (t,s) (t) (4.3)
!=lk=l k

where G. (t,s) minimizes J when S = that is, it has a one in the Zk th

entry and zero elsewhere. Hence, G. (t,s) solves

N ij t ik t' kdit

j=i Ql G1 (t )dydy ' sX dy (tss) (4.4)

Notice that the form of Q determines the form of the linear system on the

left side. It is possible to solve for all G. simultaneously, because of

the consistency of the problems (4.4). Let Jik denote the cost function J

when s = k' Then,

(G, ...G) = argmin J (G )(45)
1 n

-,k

T
Define a global cost J , given by

T -11 -N,n N N k k
J (G , G ) = . J (G (4.6)

t=lk=l

The cost JT is separable in its arguments. Hence, minimization of J corres-

ponds to solving equation (4.5) for each Y,k.

15



Let's examine closely the nature of the costs J . From equation

(2.4), J corresponds to

jek = E f(u(t) - i_(t))T Q (u(t) ) i (ti))dt (4.7)

where i- is a vector with all zeroes except a one in the R'th entry.

Furthermore, minimization of Jk is accomplished by minimizing

J1 = E (u(t) - xkt) (t) -Q(u(t)- (4.8)

for each t. Let d (t) correspond to the n x N matrix
i

d.i(t)= * (4,9)
in

ik
representing the decision variables associated with problems J1 , k=l,...n

in (4.6). Let D(t) be

dD(t) l(t) i
Dd (t)

dNWt)

Let

x(t)

X(t (t) =)

X(t)

be an n N x N matrix. Then, a simple calculation establishes that

T = Trace E (D (t)-X(t)) Q(D(t)-X(t)) (4.10)

where the i-th column of D(t) is a linear function of the local observation

process Yi (t) only.
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This is the same formulation used in Barta-Sandell [10]. We will

state theirmain result without proof, as it applies to systems of the form

(2.2) - (2.4). Before we can do so, we must introduce some notation.

The state process of equation (2.2) is given by

dx(t) = A(t) x(t)dt + B(t)dw(t) (4.11)

with local observations

dyi.(t) = C. i(t) x(t)dt + D. i(t)dv. i(t) (4.12)

where v i(t), w(t) are standard Brownian motions with w(t) independent of
1

all vi(s).

Let

A(t) = diag {A(t),...A(t)}

B(t)dw(t) = diag {B(t)dw(t),...B(t)dw(t)}

C(t) = diag Cl1 (t),...C(t) (4.13)

then, we have

dX(t) = A(t)X(t)dt +B(t)dw(t) (4.14)

Define also

Q11 I 1N

Lw(t) = . . diag [B(t)B (t)...B(t) , B(t) (t)] (4.15)

[QNlI QNN

as the enlarged system relevant driving noise intensity.

Similarly, define

17



11D (t) ... Q1NE Dl (t )d v l(t )d v N (t )D ' (t)

V (t) = | (4.16)

T T
E D (t)dv (t) dv l (t)D (t)t ... Q D (t)D T(t)

as the enlarged system relevant observation noise intensity. With this

notation, the main result of [10] is:

Proposition 4.2 The Decentralized Kalman Filter

The optimal team decision rule for equation (4.10), X(t), satisfies

dX i(t) = A(t) Xi(t)dt + K(t) [Iidyi (t) - C(t)Xi (t)] (4.17)

where

K(t) = (t) C'(t) -l (t)
vv

Ii = [oT,...I...T T is a mj xmi dimensioned matrix with

the identity in its ith block, and E(t) solves the Ricatti equation

I =A:(t) + AT(t) - K(t) K T (t) + (4.16)

QllI ''' Q1N

Xo) = diag [o·,...X I 
QN1I QNN

The estimator of Proposition 4.2 is depicted in Figure 2. The striking

feature of this estimator is that each local agent uses identical esti-

mation systems, of dimension NnxN, differing only in the input used to

drive the systems. However, in many applications, these estimators are

much larger than are necessary. In particular, it is important to note

that it is the presence of Q which creates nontrivial couplings in the

team problem, leading to large-dimension estimators.

18
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Figure 2
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When Q is diagonal, the expresions for Cww(t) and Ivv(t) are block-diagonal.

In this case, it can be established that 1(t), as given by equation (4.16)

will also be block-diagonal, and the optimal estimator will decompose into

blocks of much smaller dimension. We formalize this in the following

proposition.

Proposition 4.3 Assume Q is diagonal. Then, the optimal decision rule which

minimizes (4.10) can be synthesized using n-dimensional estimators at each

local station.

The proof follows directly from equations (4.15) and (4.16). In the

next section, we will study some specific examples to illustrate the com-

lexity of the algorithm of Proposition 4.2, and the relation of the off-

diagonal elements of the matrix Q with this complexity.

5. EXAMPLES

In this section, we discuss some examples of fully decentralized esti-

mation problems, indicating their relation with the results of section 4. To

facilitate the understanding of the examples, we will discuss only non--

dynamic Gaussian systems.

Example 1. Let Xl,x2 be independent, zero-mean Gaussian random variables

with unit variance. Define the two observation equations

Y1
= x + Vl (5.1)

Y2 2 += 2 (5.2)

where v1, v2, x1, x2 are mutually independent, normal, zero-mean random vari-

ables with unit variance.

Assume that there are two local substations. Each substation i has

access to its own measurement Yi. The performance of the elements is to

be evaluated as

20



(2 2 1 x2 1/2 1 u2 1 x2

1 2 2 2 1 2 2 

Conditioning on Y1 inside the expectation of equation(5.3).,and differentiating

with respect to u1 yields

2ul - 2 {xl ly l
} = 0

Similarly, conditioning on Y2 and differentiating with respect to u2 yields

2u2 -2E {x21y 2} - E {x2 1y2}= 0

Hence,

u1 = E {xl ly 1} (5.4)

3 E I{

U2 2 E {x2IY2 }

in this example, S =[10 1. If S 1= [1 ] , it is clear that

U1 = E {x1 Iy1} (5.5)

U2 = E {x2 1y2 }

is the optimal decentralized estimator. Now, let S = (0 0).

Then,

J = E {(ul-x2)2 + u2 + (ul-X2)u 2}

conditioning with respect to Y1 and differentiating with respect to u1 yields

21



2u = 0

Repeating for Y2 and u2 yields

2u2 - E {x2Iy 2} = 0

Hence, for S =( 0), the optimal strategy is

U1 =0

U2 = 1/2 E {x21y 2}.

As indicated in Section 4, the solution for S =( 5 ) is the superposition
of the solutions for S =(O 1)and S =(o 0).

The presence of the off diagonal elements of Q =1/2 1/2] is important in

creating the nature of the solution. Notice that, in spite of the inde-

pendence xl ,Y1 and x2,Y2, that the optimal estimator for S =1[ 1 is

not

( 1 ) =

Example 2 \ X2Y2

Example 2

Assume, in example 1, that xl= x2. Repeating the same logic for obtaining

the optimal solution for S =(0 1 , we obtain the sufficient conditions

2ul - 5 E {xlly l} + E{u2 1Y1 = 0

(5.5)

2u2 - 4 E {x21y 2} + E{ullY 2} = 0

the coupled equations (5.5) can be solved by noting that ul = ay1, u2 = by2,

for some constant a, b. Equation (5.5) becomes
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2ul - 5 E{tllYl + bE{Y2lYl} = 0

(5.6)

2u2 - 4 E{x 2 1y2} + aE{Ylly 2} = 0

Now,

E{y I2y} = E{x lYl}

E{y 11Y2} = E{x 21y2}

So,

a Y1 =-( 2) E{xllyl

(5.7)
b Y2 = 2 - a/2 E{x21y 2}

Rewriting in terms of contants,

a + b/4 = 5/4

b + a/4 = 1

so a = 16/15 (5.8)

b = 11/15

Equation (5.8) was obtained by solving the simultaneous euqations obtained

from the variational arguments. For differential systems, these equations

will be coupled integral equations which are hard to solve.

Let's establish the solution (5.8) using the decomposition approach of

Section 4. Let S =(1 0) . Then, the performance measure is

J = E{(U -X1) + (u -x )u +u 2

Variational arguments yield
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2u - 2 E {Xlly l } + E{u21y = 0

2u2 - E{x2 1Y2 } + E{UllY 2 } (5.9)

which imply a = 7/15 , b = 2/15

By symmetry, the solution for S = ( 1) is

a = 2/15 b = 7/15

For S = (0 0,' the performance measure is

J = E{(ul-x2 ) + (u1 -x2 )u2 + u2}

2 2
= E{(U1-X 1) + u2

which has already been solved, yielding

a = 7/15 b = 2/15

11
Summary all three yields the result for S = as

0 1

a = 7/15 + 2/15 + 7/15 = 16/15

b = 4/15 + 7/15 = 11/15

We will now use proposition 4.2 directly to solve example 2. Since x1 = x2,

the effective state dimension is 1. Hence, the matrix D in Section 4 has

dimension 2 x 2, with the first column a function of yl while the second

column is a fucntion of Y2. The overall team cost is given as in (4.10), by

J = Trace [(D - x) ) 1/2)D 1 ) x) ]

The optimal solution X is characterized by
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E (X - Q DT = (5.10)

for any D whose first column is a function of y1l and its second column a

function of Y2. Let

X = (a blY2 ) (5.11)

a2Y1 b2Y2

Equations (5.10) and (5.11) imply

alY1-x bb1 y2 )
E |t ly2x ) ( (5.12)

a2Y 1 a2Y2-x Y2

which reduces to

a2 b20 2 Y2 ° X Y2 (

Let's compute the terms in equations (5.13).

Ei 0 1 /2)y1 o 2 1/2

\ Y2 1/2 1 Y2 1/2 2

E t )Q =

0 x ° Y2 1/2 1

Hence,

/a1 b1 1/2 /2 -1 /15 2/15S

a2 b2 1/2 1 1/2 2 2/15 7/15
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The solution for S = Li is thus

ul = (2 . 7/15 + 2/15) yl = 16/15 Yl

u2 = (2 . 2/15 + 7/15) Y2 = 11/15 y2'

as was established before.

Notice that a diagonal Q would have decoupled the problem by permitting

a trivial inversion of a diagonal matrix, as predicted in proposition 4.3.

6. CONCLUSION

We have presented a framework for the design of distributed estimation

schemes with specific architectures, based on a decision theoretic approach.

For a fully decentralized architecture, explicit solutions to the estima-

tion problem were described and illustrated with several examples. The

examples illustrate that the complexity of the decentralized estimation

scheme is critically dependent on the importance of the cross-correlation

of errors in the local estimators, which are represented by the off-diagonal

elements of the positive definite matrix Q. Most practical systems will want

to weigh heavily the correlation of local errors, For example, in a dis-

tributed surveillance network, it is important that errors in location or

detection at one local substation be corrected by other substations. In

other words, it is very costly for all substations to err in the same way,

This is reflected in the performance measure by the off-diagonal elements of

Q.

The examples in Section 5 illustrate the high dimensionality required

by the local estimators in order to compensate for correlations in their

errors. It is our conjecture that the dimensionality of the local estimators

is directly related to the number of off-diagonal elemets of Q.
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When there is a coordinator station present, the results presented in

Section 3 provide necessary conditions for the optimality of the estimation

operators. Unfortunately, the coupling between decisions at the local sub-

stations and the information available to the coordinator makes the analysis

a difficult problem. We expect that, under some simplifying assumptions,

the necessary conditions of Section 3 can lead to a solution, as in Section 4.

Such results have been reported in Willsky, Castanon et al [2] for a simple

class of performance measures.

The formulation of Section 2 can be extended to incorporate communi-

cation restrictions, as well as delays in the transmission of local decisions.

These are areas which will be studied in the future.
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